4 items with the tag “iodp

  • Developing New Sampling System, Collection of Juan De Fuca Ridge Basement Fluids
    NAI 2009 University of Hawaii, Manoa Annual Report

    Our Deep Biosphere project is designed to exploit the unprecedented opportunities provided by the new generation of long-term borehole- observatories installed on the flanks of the Juan de Fuca Ridge (JdFR) by the Integrated Ocean Drilling Program, to study the microbial geochemistry and ecology of the sediment-buried ocean basement. The Drill ship drills deep holes through the sediments into the underlying basaltic rocks and then installs a 'CORK’ observatory consisting of casings, fluid delivery lines with seafloor access-spigots, downhole instruments, and a top plug.

    ROADMAP OBJECTIVES: 3.2 3.3 4.1 5.2 5.3
  • Deep (Sediment-Buried Basement) Biosphere
    NAI 2010 University of Hawaii, Manoa Annual Report

    The ocean crust comprises the largest aquifer on earth and there is increasing evidence that supports the presence of actively growing microbial communities within basaltic porewaters.

    Advanced Integrated Ocean Drilling Program (IODP) circulation obviation retrofit kit (CORK) observatories provide a unique opportunity to sample these otherwise inaccessible deep subseafloor habitats at the basalt-sediment transition zone. Aging porewaters remain isolated within this sediment-buried upper oceanic basement, subjected to increasing temperatures and pressures as plates move away from spreading ridges.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2 7.1 7.2
  • Deep (Sediment-Buried Basement) Biosphere
    NAI 2011 University of Hawaii, Manoa Annual Report

    The ocean crust comprises the largest aquifer on earth. Deep sediment cover provides an environ-ment for a unique biosphere hosting microorganisms surviving under extreme conditions. Frac-tured rock provides abundant surfaces that can be colonized by diverse microbes and water-rock reactions promote chemical conditions that influence key geochemical cycles within the Earth’s crust and oceans. Team members participated in a 14-day research cruise to study the sediment-buried basement (basaltic crust) biosphere, to provide unprecedented and unique insight into the mobility and origin of microorganisms within this remote biosphere.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2 7.1 7.2
  • Interdisciplinary Studies of Earth's Seafloor Biosphere
    NAI 2012 University of Hawaii, Manoa Annual Report

    The remote deep sediment-buried ocean basaltic crust is Earth’s largest aquifer and host to the least known and potentially one of the most significant biospheres on Earth. CORK observatories have provided unparalleled access to this remote environment. They are enabling groundbreaking research in crustal fluid flow, (bio)geochemical fluid/crustal alteration, and the emerging field of deep crustal biosphere

    ROADMAP OBJECTIVES: 4.1 4.2 5.1 5.2 5.3 6.1 6.2 7.1 7.2