2 items with the tag “ice

  • Water and Habitability of Mars and the Moon and Antarctica
    NAI 2013 University of Hawaii, Manoa Annual Report

    Water plays an important role in shaping the crusts of the Earth and Mars, and now we know it is present inside the Moon and on its surface. We are assessing the water budgets and total inventories on the Moon and Mars by analyzing samples from these bodies.

    We also study local concentrations of water ice on the Moon, Mars, and at terrestrial analogue sites such as Antarctica and Mauna Kea, Hawaii. We are particularly interested in how local phenomena or microclimates enable ice to form and persist in areas that are otherwise free of ice, such as cold traps on the Moon, tropical craters with permafrost, and ice caves in tropical latitudes. We approach these problems with field studies, modeling, and data analysis. We also develop new instruments and exploration methods to characterize these sites. Several of the terrestrial field sites have only recently become available for scientific exploration.

    HI-SEAS (Hawaii Space Exploration Analog and Simulation, hi-seas.org) is a small habitat at a Mars analog site in the saddle area of the Island of Hawaii. It is a venue for conducting research relevant to long-duration human space exploration. We have just completed our first four-month long mission, and are preparing for three more, of four, eight and twelve months in length. The habitat is a 36’ geodesic dome, with about 1000 square feet of floor space over two stories. It is a low-impact temporary structure that can accommodate six crewmembers, and has a kitchen, a laboratory, and a flexible workspace. Although it is not airtight, the habitat does have simulated airlock, and crew-members don mockup EVA suits before going outside. The site is a disused quarry on the side of a cinder/splatter cone, surrounded by young lava fields. There is almost no human activity or plant life visible from the habitat, making it ideal for ICE (isolated/confined/extreme) research.

    ROADMAP OBJECTIVES: 1.1 2.1 3.1 5.3 6.1 6.2 7.1
  • Biosignatures in Relevant Microbial Ecosystems
    NAI 2013 Pennsylvania State University Annual Report

    PSARC is investigating microbial life in some of Earth’s most mission-relevant modern ecosystems. These environments include the Dead Sea, the Chesapeake Bay impact structure, methane seeps, ice sheets, and redox-stratified Precambrian ocean analogs. We target environments that, when studied, provide fundamental information that can serve as the basis for future solar system exploration. Combining our expertise in molecular biology, geochemistry, microbiology, and metagenomics, and in collaboration with some of the planet’s most extreme explorers, we are deciphering the microbiology, fossilization processes, and recoverable biosignatures from these mission-relevant environments.

    PSARC Ph.D. (now postdoctoral researcher at Caltech) Katherine Dawson published a new paper documenting the anaerobic biodegradation of organic biosignature compounds pristane and phytane. PSARC Ph.D. Daniel Jones (now postdoctoral researcher at U. Minnesota) published a new paper that uses metagenomic data to show how sulfur oxidation in the deep subsurface environments may contribute to the formation of caves and the maintenence of deep subsurface microbial ecosystems. PSARC Ph.D. student Khadouja Harouaka published a new paper that represents some of the first available information about possible Ca isotope biosignatures. Lastly, the Macalady group published a paper showing how ecological models based on available energy resources can be used to predict the distribution of microbial populations in space and time.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2