3 items with the tag “geodynamics

  • Habitability of Water-Rich Environments, Task 2: Model the Dynamics of Icy Mantles
    NAI 2009 Arizona State University Annual Report

    A major aim of future missions to Jupiter’s moon Europa will be to determine whether or not a subsurface ocean exists beneath the icy surface, and assess its habitability. Such investigations require that we understand how features visible at the surface are related to the ocean that may lie below. A major process governing this interaction is convection within ice. To this end, we are developing a new model of Europa ice convection.

    ROADMAP OBJECTIVES: 1.1 2.2
  • Habitability of Water-Rich Environments, Task 2: Model the Dynamics of Icy Mantles
    NAI 2010 Arizona State University Annual Report

    Europa, one of Jupiter’s moons, is one of the few places in our solar system hypothesized
    to be habitable. Beneath a frozen, icy surface lies a liquid water ocean that could contain the chemical constituents required by life. Future missions to Europa will study its surface in detail in an effort to extrapolate the conditions below. So it is important to understand how mass can be transported from the deep ocean, through the ice, and to the surface of the moon. To understand this process, we are performing numerical fluid-dynamical calculations of 2-phase, thermochemical convection to investigate how chemistry from the deep ocean is transported to Europa’s surface. Furthermore, we are investigating how this material transport is expected to deform Europa’s surface, such that future missions will be able to infer deep, convective processes of the moon’s interior from surface observations.

    ROADMAP OBJECTIVES: 1.1 2.2
  • Habitability of Water-Rich Environments, Task 2: Model the Dynamics of Icy Mantles
    NAI 2011 Arizona State University Annual Report

    Jupiter’s moon Europa provides a combination of physical and chemical conditions that may be among the most suitable in the solar system for sustaining life. Europa almost certainly has a liquid ocean. This ocean may have the ingredients necessary for life, but it is shielded from observation by a thick overlying ice layer. Under certain conditions this ice layer may undergo convection that can transport chemical species from the ocean to the surface, where they may be detected. Our computer modeling of convection in this ice layer aims to quantify how much ocean material may be brought to the surface. This work provides guidance for future missions to Europa.

    ROADMAP OBJECTIVES: 1.1 2.2